A note on biharmonic submanifolds of product spaces
نویسنده
چکیده
We investigate biharmonic submanifolds of the product of two space forms. We prove a necessary and sufficient condition for biharmonic submanifolds in these product spaces. Then, we obtain mean curvature estimates for proper-biharmonic submanifold of a product of two unit spheres. We also prove a non-existence result in the case of the product of a sphere and a hyperbolic space.
منابع مشابه
$L_1$-Biharmonic Hypersurfaces in Euclidean Spaces with Three Distinct Principal Curvatures
Chen's biharmonic conjecture is well-known and stays open: The only biharmonic submanifolds of Euclidean spaces are the minimal ones. In this paper, we consider an advanced version of the conjecture, replacing $Delta$ by its extension, $L_1$-operator ($L_1$-conjecture). The $L_1$-conjecture states that any $L_1$-biharmonic Euclidean hypersurface is 1-minimal. We prove that the $L_1$-conje...
متن کاملPolyharmonic submanifolds in Euclidean spaces
B.Y. Chen introduced biharmonic submanifolds in Euclidean spaces and raised the conjecture ”Any biharmonic submanifold is minimal”. In this article, we show some affirmative partial answers of generalized Chen’s conjecture. Especially, we show that the triharmonic hypersurfaces with constant mean curvature are minimal. M.S.C. 2010: 58E20, 53C43.
متن کاملLower order eigenvalues of the biharmonic operator
Abstract In this paper we consider the lower order eigenvalues of biharmonic operator on compact Riemannian manifolds with boundary (possibly empty) and prove a type of general inequalities for them. In particular, we study the lower order eigenvalues of biharmonic operator on compact submanifolds of Euclidean spaces, of spheres, and of projective spaces. We obtain some estimates for lower orde...
متن کاملClassification Results for Biharmonic Submanifolds in Spheres
We classify biharmonic submanifolds with certain geometric properties in Euclidean spheres. For codimension 1, we determine the biharmonic hypersurfaces with at most two distinct principal curvatures and the conformally flat biharmonic hypersurfaces. We obtain some rigidity results for pseudo-umbilical biharmonic submanifolds of codimension 2 and for biharmonic surfaces with parallel mean curva...
متن کاملProperties of Biharmonic Submanifolds in Spheres
In the present paper we survey the most recent classification results for proper biharmonic submanifolds in unit Euclidean spheres. We also obtain some new results concerning geometric properties of proper biharmonic constant mean curvature submanifolds in spheres.
متن کامل